Reading NFC tags in Swift can be accomplished using the Core NFC framework. This powerful framework allows developers to interact with Near Field Communication (NFC) tags to read their data. Below is a simple example of how to implement NFC tag reading in a Swift application.
import CoreNFC
class ViewController: UIViewController, NFCNDEFReaderSessionDelegate {
var nfcSession: NFCNDEFReaderSession?
override func viewDidLoad() {
super.viewDidLoad()
}
func startScanning() {
nfcSession = NFCNDEFReaderSession(delegate: self, queue: nil, invalidateAfterFirstRead: false)
nfcSession?.begin()
}
func readerSession(_ session: NFCNDEFReaderSession, didInvalidateWithError error: Error) {
print("Session Invalidated: \(error.localizedDescription)")
}
func readerSession(_ session: NFCNDEFReaderSession, didDetectNDEFs messages: [NFCNDEFMessage]) {
for message in messages {
for record in message.records {
if let payloadString = String(data: record.payload, encoding: .utf8) {
print("NFC Tag Payload: \(payloadString)")
}
}
}
}
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?