The SettingWithCopyWarning
was created to flag potentially confusing "chained" assignments, such as the following, which does not always work as expected, particularly when the first selection returns a copy. [see GH5390 and GH5597 for background discussion.]
df[df['A'] > 2]['B'] = new_val # new_val not set in df
The warning offers a suggestion to rewrite as follows:
df.loc[df['A'] > 2, 'B'] = new_val
However, this doesn't fit your usage, which is equivalent to:
df = df[df['A'] > 2]
df['B'] = new_val
While it's clear that you don't care about writes making it back to the original frame (since you are overwriting the reference to it), unfortunately this pattern cannot be differentiated from the first chained assignment example. Hence the (false positive) warning. The potential for false positives is addressed in the docs on indexing, if you'd like to read further. You can safely disable this new warning with the following assignment.
import pandas as pd
pd.options.mode.chained_assignment = None # default='warn'
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?