INNER JOIN in MySQL is a type of join that returns only the rows from two or more tables where there is a match based on a specified condition. This allows you to combine rows from multiple tables based on related columns, and it is commonly used to retrieve data that is spread across different tables.
Here is an example of using INNER JOIN to combine data from two tables, `customers` and `orders`:
<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "database_name";
// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);
// Check connection
if ($conn->connect_error) {
die("Connection failed: " . $conn->connect_error);
}
$sql = "SELECT customers.name, orders.order_id
FROM customers
INNER JOIN orders ON customers.id = orders.customer_id";
$result = $conn->query($sql);
if ($result->num_rows > 0) {
// output data of each row
while($row = $result->fetch_assoc()) {
echo "Name: " . $row["name"]. " - Order ID: " . $row["order_id"]. "<br>";
}
} else {
echo "0 results";
}
$conn->close();
?>
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?