Generic methods in Java provide a powerful way to implement functionality that can work with different types of data. You should prefer generic methods when you want to achieve type safety, reduce code duplication, and improve the readability of your code. In contrast, you might want to avoid generic methods in cases where the added complexity does not justify the benefits or when you are working with legacy code that does not use generics.
public class GenericExample {
public static void printArray(T[] array) {
for (T element : array) {
System.out.println(element);
}
}
public static void main(String[] args) {
Integer[] intArray = {1, 2, 3, 4, 5};
String[] strArray = {"Hello", "World"};
printArray(intArray);
printArray(strArray);
}
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?