A deadlock in Java occurs when two or more threads are blocked forever, each waiting for the other to release a resource. This situation arises when two or more threads hold resources that the others need to continue executing. In a deadlock scenario, the threads cannot proceed because they are each waiting for another to release a lock.
To illustrate, consider the following example:
public class DeadlockExample {
private final Object lock1 = new Object();
private final Object lock2 = new Object();
public void method1() {
synchronized (lock1) {
System.out.println("Thread 1: Holding lock 1...");
try { Thread.sleep(100); } catch (InterruptedException e) {}
System.out.println("Thread 1: Waiting for lock 2...");
synchronized (lock2) {
System.out.println("Thread 1: Acquired lock 2!");
}
}
}
public void method2() {
synchronized (lock2) {
System.out.println("Thread 2: Holding lock 2...");
try { Thread.sleep(100); } catch (InterruptedException e) {}
System.out.println("Thread 2: Waiting for lock 1...");
synchronized (lock1) {
System.out.println("Thread 2: Acquired lock 1!");
}
}
}
public static void main(String[] args) {
DeadlockExample de = new DeadlockExample();
Thread t1 = new Thread(de::method1);
Thread t2 = new Thread(de::method2);
t1.start();
t2.start();
}
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?