Implementing dead-letter queues in NATS using Go can enhance your message processing architecture by handling failed messages effectively. Dead-letter queues allow you to capture messages that could not be processed successfully, enabling you to analyze and retry them later.
package main
import (
"fmt"
"log"
"nats.io/nats.go"
"time"
)
func main() {
// Connect to NATS
nc, err := nats.Connect(nats.DefaultURL)
if err != nil {
log.Fatal(err)
}
defer nc.Close()
// Create a subject for normal messages
subject := "tasks"
// Create a dead-letter queue subject
deadLetterSubject := "tasks.deadletter"
// Subscribe to the normal subject
nc.Subscribe(subject, func(msg *nats.Msg) {
// Simulate message processing
err := processMessage(msg)
if err != nil {
// Send failed message to dead-letter queue
fmt.Printf("Message processing failed: %v. Sending to dead-letter queue.\n", err)
nc.Publish(deadLetterSubject, msg.Data)
} else {
fmt.Printf("Processed message: %s\n", string(msg.Data))
}
})
// Subscribe to dead-letter queue
nc.Subscribe(deadLetterSubject, func(msg *nats.Msg) {
fmt.Printf("Received message from dead-letter queue: %s\n", string(msg.Data))
// You can add logic to analyze or retry the message
})
// Keep the connection alive
select {} // Block forever
}
// Dummy message processing function
func processMessage(msg *nats.Msg) error {
// Simulate a processing error for demonstration
return fmt.Errorf("processing error")
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?