Right-sizing resources for Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA) is crucial for optimizing the utilization of resources in your Kubernetes environment. By accurately sizing your pods, you can ensure efficient performance while controlling costs.
The HPA adjusts the number of pods in a deployment based on observed CPU utilization or other select metrics. The following steps can help you right-size resources for HPA:
VPA recommends optimal CPU and memory requests for pods. Follow these practices for right-sizing:
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: my-app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: my-app
minReplicas: 2
maxReplicas: 10
targetCPUUtilizationPercentage: 70
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?