Canary releases allow you to deploy new features to a small subset of users before a full rollout. In a multi-tenancy architecture on Kubernetes (k8s), this practice can improve the deployment process by minimizing risk. Here’s how you can implement canary releases for multi-tenancy in Kubernetes.
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-canary
spec:
replicas: 1
selector:
matchLabels:
app: myapp
version: canary
template:
metadata:
labels:
app: myapp
version: canary
spec:
containers:
- name: myapp
image: myapp:v2 # New Version
ports:
- containerPort: 80
By following these steps, you can safely manage canary releases across a multi-tenant Kubernetes environment.
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?