The Minimum Spanning Tree (MST) algorithms, including Kruskal's and Prim's, are essential for finding the least-cost paths between nodes in a graph. These algorithms are widely used in networking, circuit design, and various optimization problems.
#include
#include
#include
using namespace std;
struct Edge {
int src, dest, weight;
};
bool compare(Edge a, Edge b) {
return a.weight < b.weight;
}
class DisjointSet {
vector parent, rank;
public:
DisjointSet(int n) {
parent.resize(n);
rank.resize(n, 0);
for (int i = 0; i < n; i++) parent[i] = i;
}
int find(int u) {
if (parent[u] != u) parent[u] = find(parent[u]);
return parent[u];
}
void unionSet(int u, int v) {
int rootU = find(u), rootV = find(v);
if (rootU != rootV) {
if (rank[rootU] > rank[rootV]) parent[rootV] = rootU;
else if (rank[rootU] < rank[rootV]) parent[rootU] = rootV;
else {
parent[rootV] = rootU;
rank[rootU]++;
}
}
}
};
void kruskalMST(vector& edges, int V) {
sort(edges.begin(), edges.end(), compare);
DisjointSet ds(V);
vector mstEdges;
for (Edge e : edges) {
if (ds.find(e.src) != ds.find(e.dest)) {
ds.unionSet(e.src, e.dest);
mstEdges.push_back(e);
}
}
for (Edge e : mstEdges) {
cout << e.src << " -- " << e.dest << ": " << e.weight << endl;
}
}
int main() {
int V = 4; // Number of vertices
vector edges = {
{0, 1, 10},
{0, 2, 6},
{0, 3, 5},
{1, 3, 15},
{2, 3, 4}
};
kruskalMST(edges, V);
return 0;
}
#include
#include
#include
using namespace std;
#define V 5
int minKey(int key[], bool mstSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++) {
if (!mstSet[v] && key[v] < min) {
min = key[v];
min_index = v;
}
}
return min_index;
}
void primMST(int graph[V][V]) {
int parent[V];
int key[V];
bool mstSet[V];
for (int i = 0; i < V; i++) {
key[i] = INT_MAX;
mstSet[i] = false;
}
key[0] = 0;
parent[0] = -1;
for (int count = 0; count < V - 1; count++) {
int u = minKey(key, mstSet);
mstSet[u] = true;
for (int v = 0; v < V; v++) {
if (graph[u][v] && !mstSet[v] && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}
for (int i = 1; i < V; i++) {
cout << parent[i] << " -- " << i << ": " << graph[i][parent[i]] << endl;
}
}
int main() {
int graph[V][V] = { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
primMST(graph);
return 0;
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?