Implementing custom allocators is essential for optimizing memory management in financial applications, where performance and efficiency are critical. Custom allocators can help reduce fragmentation, improve cache performance, and speed up allocation and deallocation processes that are frequent in high-frequency trading systems.
#include
#include
#include
template
class CustomAllocator {
public:
using value_type = T;
CustomAllocator() = default;
template
CustomAllocator(const CustomAllocator&) {}
T* allocate(std::size_t n) {
if (n > std::numeric_limits::max() / sizeof(T)) {
throw std::bad_alloc();
}
if (auto p = std::malloc(n * sizeof(T))) {
return static_cast(p);
}
throw std::bad_alloc();
}
void deallocate(T* p, std::size_t) {
std::free(p);
}
};
int main() {
std::vector> vec;
for (int i = 0; i < 10; ++i) {
vec.push_back(i);
}
for (auto& elem : vec) {
std::cout << elem << " ";
}
return 0;
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?