In modern C++, composing lazy pipelines can be achieved using techniques such as range adaptors. This approach allows you to process data in a more functional style without creating temporary containers.
// Example of composing lazy pipelines in C++
#include
#include
#include
#include
int main() {
std::vector numbers = {1, 2, 3, 4, 5};
auto result = numbers | std::views::filter([](int n) { return n % 2 == 0; })
| std::views::transform([](int n) { return n * n; });
for (int n : result) {
std::cout << n << " "; // Outputs: 4 16
}
return 0;
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?