Building a simple task scheduler using coroutines in C++ can significantly enhance the way we manage asynchronous tasks. This example shows how to create a basic task scheduler that leverages C++20 coroutines.
#include#include #include #include class Task { public: struct promise_type { Task get_return_object() { return Task(this); } std::suspend_never initial_suspend() { return {}; } std::suspend_never final_suspend() noexcept { return {}; } void unhandled_exception() { std::terminate(); } void return_void() {} }; Task(promise_type* p) : handle(p) {} ~Task() { handle.destroy(); } private: std::coroutine_handle handle; }; class TaskScheduler { public: void schedule(Task task) { tasks.push(std::move(task)); } void run() { while (!tasks.empty()) { auto task = std::move(tasks.front()); tasks.pop(); task.resume(); } } private: std::queue tasks; }; // Example coroutine to be scheduled Task myTask() { std::cout << "Task is running...\n"; co_return; } int main() { TaskScheduler scheduler; scheduler.schedule(myTask()); scheduler.run(); return 0; }
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?