Optimize Hilt performance in Android to enhance your app's efficiency, reduce lag, and ensure smoother user experiences. Implement best practices for dependency injection and resource management ranging from initialization to modularization.
Android Performance, Hilt, Dependency Injection, Android Development, App Optimization, Resource Management, Modularization
// Example of how to scope dependencies with Hilt
@Module
@InstallIn(SingletonComponent::class)
object NetworkModule {
@Provides
@Singleton
fun provideOkHttpClient(): OkHttpClient {
return OkHttpClient.Builder()
.connectTimeout(30, TimeUnit.SECONDS)
.readTimeout(30, TimeUnit.SECONDS)
.writeTimeout(30, TimeUnit.SECONDS)
.build()
}
@Provides
@Singleton
fun provideRetrofit(okHttpClient: OkHttpClient): Retrofit {
return Retrofit.Builder()
.baseUrl("https://api.example.com/")
.client(okHttpClient)
.addConverterFactory(GsonConverterFactory.create())
.build()
}
}
How do I avoid rehashing overhead with std::set in multithreaded code?
How do I find elements with custom comparators with std::set for embedded targets?
How do I erase elements while iterating with std::set for embedded targets?
How do I provide stable iteration order with std::unordered_map for large datasets?
How do I reserve capacity ahead of time with std::unordered_map for large datasets?
How do I erase elements while iterating with std::unordered_map in multithreaded code?
How do I provide stable iteration order with std::map for embedded targets?
How do I provide stable iteration order with std::map in multithreaded code?
How do I avoid rehashing overhead with std::map in performance-sensitive code?
How do I merge two containers efficiently with std::map for embedded targets?